Functional roles of the amino terminal domain in determining biophysical properties of Cx50 gap junction channels
نویسندگان
چکیده
Communication through gap junction channels is essential for synchronized and coordinated cellular activities. The gap junction channel pore size, its switch control for opening/closing, and the modulations by chemicals can be different depending on the connexin subtypes that compose the channel. Recent structural and functional studies provide compelling evidence that the amino terminal (NT) domains of several connexins line the pore of gap junction channels and play an important role in single channel conductance (γ j ) and transjunctional voltage-dependent gating (V j -gating). This article reviews recent studies conducted on a series of mutations/chimeras in the NT domain of connexin50 (Cx50). Functional examination of the gap junction channels formed by these mutants/chimeras shows the net charge number at the NT domain to be an important factor in γ j and in V j -gating. Furthermore, with an increase in the net negative charge at the NT domain, we observed an increase in the γ j as well as changes in the parameters of the Boltzmann fit of the normalized steady-state conductance and V j relationship. Our data are consistent with a structural model where the NT domain of Cx50 lines the gap junction pore and plays an important role in sensing V j and in the subsequent conformational changes leading to gating, as well as in limiting the rate of ion permeation.
منابع مشابه
The First Extracellular Domain Plays an Important Role in Unitary Channel Conductance of Cx50 Gap Junction Channels
Gap junction (GJ) channels provide direct passage for ions and small molecules to be exchanged between neighbouring cells and are crucial for many physiological processes. GJ channels can be gated by transjunctional voltage (known as Vj-gating) and display a wide range of unitary channel conductance (γj), yet the domains responsible for Vj-gating and γj are not fully clear. The first extracellu...
متن کاملCx50 requires an intact PDZ-binding motif and ZO-1 for the formation of functional intercellular channels
The three connexins expressed in the ocular lens each contain PDZ domain-binding motifs directing a physical association with the scaffolding protein ZO-1, but the significance of the interaction is unknown. We found that Cx50 with PDZ-binding motif mutations did not form gap junction plaques or induce cell-cell communication in HeLa cells, whereas the addition of a seven-amino acid PDZ-binding...
متن کاملAquaporin 0 enhances gap junction coupling via its cell adhesion function and interaction with connexin 50.
Both connexin 50 (Cx50) and aquaporin 0 (AQP0) have important roles in lens development and homeostasis, and their mutations are associated with human congenital cataracts. We have previously shown that Cx50 directly interacts with AQP0. Here, we demonstrate the importance of the Cx50 intracellular loop (IL) domain in mediating the interaction with AQP0 in the lens in vivo. AQP0 significantly i...
متن کاملErratum: Interfering amino terminal peptides and functional implications for heteromeric gap junction formation
Connexin43 (Cx43) is widely expressed in many different tissues of the human body. In cells of some organs, Cx43 is co-expressed with other connexins (Cx), including Cx46 and Cx50 in lens, Cx40 in atrium, Purkinje fibers, and the blood vessel wall, Cx45 in heart, and Cx37 in the ovary. Interactions with the co-expressed connexins may have profound functional implications. The abilities of Cx37,...
متن کاملFunctional characterization of a naturally occurring Cx50 truncation.
PURPOSE Lens connexins undergo proteolytic cleavage of their C termini during fiber maturation. Although the functional significance of this is unknown, cleavage has been correlated with changes in channel-gating properties. This study evaluates the functional consequences of this endogenous truncation by characterizing the properties of a C-terminal truncated Cx50 protein. METHODS Murine and...
متن کامل